If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-Y^2+10Y+30000
We move all terms to the left:
-(-Y^2+10Y+30000)=0
We get rid of parentheses
Y^2-10Y-30000=0
a = 1; b = -10; c = -30000;
Δ = b2-4ac
Δ = -102-4·1·(-30000)
Δ = 120100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120100}=\sqrt{100*1201}=\sqrt{100}*\sqrt{1201}=10\sqrt{1201}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10\sqrt{1201}}{2*1}=\frac{10-10\sqrt{1201}}{2} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10\sqrt{1201}}{2*1}=\frac{10+10\sqrt{1201}}{2} $
| -2x+50=2x+22 | | 5y²-8y-28=0 | | 4x+4+8x=100 | | 9.8x-4.1=6.1 | | -1+5(3a+5)=84 | | 3x+11/2=-2 | | 5x+25=2x=10 | | |6n-1|+13=7 | | 4n^2=21 | | 4g=18.8 | | x/0.0796=75.28 | | -2.8x=44.52 | | 3f=12-3 | | t8= -5 | | p-278=11 | | 1/2(x+5)=29/10 | | -4=2c-2 | | 8g+10=35=3g | | 4x–6+3(2–x)=2x–(x–4) | | 4x+9=3x+18 | | 5x+50=2x+22 | | s-37=134 | | 7=1-x | | x/0.0931=74.71 | | 5(2x-3)=3(2x+7) | | 29r=145 | | -8u+44=4(u-4) | | 3x+8-2(1-x)=1 | | X^2-1/3=x^2-2x+1/2 | | d-483=-205 | | 5+3/8n=3/8n | | f/3=7 |